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Mean curvature and second fundamental form

Let (Mn, g) be a Riemannian manifold and let Σk be a submanifold
of M with the induced Riemannian structure.

Definition
Let ∇ be the Levi-Civita connection of (M, g). The second
fundamental form of Σ is:

A(X ,Y ) := (∇XY )⊥

II (X ,Y ) := g(A(X ,Y ), ν),

where X ,Y are tangent vectors and ν is a normal vector.
The mean curvature H of Σ is the trace of A i.e.

H =
∑
i

A(ei , ei ), {ei}i local orthonormal frame of Σ.
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Minimal submanifolds

Definition
A submanifold Σ of a Riemannian manifold is minimal if it is a
critical point of the volume. By the first variation formula, Σ is
minimal if and only if H = 0.

Example
1 Geodesics are 1-dimensional minimal submanifolds;
2 Plane, catenoid, Enneper surface in R3;
3 The clifford torus in S3;
4 Complex submanifolds of Kähler manifolds;
5 Calibrated submanifolds are homologically volume minimizing

and hence minimal.
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k-convex functions

Definition
A smooth function f : Mn → R is said to be k-convex if

TrWHessfx ≥ 0 ∀x ∈ M, ∀W ∈ G (k,TxM).

If the inequality is strict, f is strictly k-convex.

We recall the following well-known lemma.

Lemma

Let f : Mn → R be a k-convex function and let Σk be a
k-dimensional compact minimal submanifold. Then, Σ is contained
in the set where f is not strict. In particular, f |Σ is constant.

Proof: TrΣHessf = ∆Σf −H(f ).
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Examples

In Rn with the Euclidean metric, f (x) = |x |2 is 1-convex.
In R4 with Taub–NUT metric, f (x) = |x |2 is 1-convex.
(Tsai–Wang 2018) In T ∗S2 with Eguchi–Hanson metric, the
square of the distance from the zero section is 1-convex.
(Tsai–Wang 2018) In T ∗Sn (T ∗CPn) with Stenzel metric
(Calabi metric), the square of the distance from the zero
section is 1-convex.
(Tsai–Wang 2018) In S(S3), Λ2

−(S4), Λ2
−(CP2) and S−(S4)

with the Bryant–Salamon metrics, the square of the distance
from the zero section is 1-convex.

In particular, compact minimal submanifolds are contained in the
zero section (minimal).
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k-convex boundaries

Let Ω be a domain of Mn.

Definition
We say that ∂Ω is k-convex if

TrW IIx ≥ 0 ∀x ∈ ∂Ω, ∀W ∈ G (k ,Tx∂Ω),

where II is the second fundamental form with respect to the inward
pointing normal. If the inequality is strict, ∂Ω is strictly k-convex.

Theorem (Harvey–Lawson 2012)

If ∂Ω is strictly k-convex, there is a k-convex function f ∈ C∞(Ω)
which is strict in a neighbourhood of ∂Ω.
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The barrier method

Corollary
If ∂Ω is strictly k-convex, there are no k-dimensional compact
minimal submanifolds contained in Ω with a point tangent to ∂Ω.

Remark
n − 1 convex ⇐⇒ inward pointing mean curvature.

Remark
Let f : M → R and let a be a regular value. Then, the second
fundamental form of f −1(a) is:

II =
1
|∇f |

Hessf
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Avoidance principle

If k = n − 1, it is just the classical avoidance principle for the mean
curvature flow. In higher codimension, we can use the generalized
avoidance principle (White ’15).

H
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The Gibbons-Hawking ansatz

Let U ⊂ R3 open, let π : X → U be a principal S1-bundle, let ξ
generator of the action and let η ∈ Ω1(X ,R) connection 1-form i.e.
S1-invariant and η(ξ) = 1.
Let φ be a positive harmonic function on U satisfying:

∗R3dφ = dη (Monopole equation).

Then, (X , g) is an hyperkähler manifold constructed via the
Gibbons-Hawking ansatz,

g := φgR3 + φ−1η2,

ωi := dxi ∧ η + φdxj ∧ dxk .



The Barrier Method The Gibbons–Hawking Ansatz Barriers in the Gibbons–Hawking Ansatz

Examples

φ = 1
2|x | =⇒ Euclidean space.

φ = m + 1
2|x | =⇒ Taub–NUT space.

φ = 1
2|x−p| + 1

2|x+p| =⇒ Eguchi–Hanson space.

φ =
∑k

i=1
1

2|x−pi | =⇒ Multi-Eguchi–Hanson space.

φ = m +
∑k

i=1
1

2|x−pi | =⇒ Multi-Taub–NUT space.

p1 p2

S2 ⊂ T ∗S2

p1 p2

Figure: Equivalence of E–H metric to two center G–H metric.
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Circle-invariant minimal submanifolds

Let (X , g) multi-E-H or a multi-T-N space with k singular points
denoted by {pi}ki=1.
Using Hsiang and Lawson equivariant argument we have:

(Lotay–Oliveira 2020) S1-invariant geodesics in
(X , g) ⇐⇒ ∇φ = 0. There are k − 1 (unstable) S1-invariant
geodesics and are contained in Co({pi}i ).
(Lotay–Oliveira 2020) S1-invariant minimal surfaces in (X , g)
⇐⇒ geodesics in Euclidean R3. These are complex curves
w.r.t a compatible complex structure and contain the class of
all compact complex curves (segment connecting singular
points).
(T. 2020) S1-invariant minimal hypersurfaces in (X , g) ⇐⇒
minimal surfaces in (R3, φ1/2gR3). Only known examples are
given by symmetries of the "singular points".
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Motivation

Question

Are compact minimal submanifolds S1-invariant or contained in a
S1-invariant submanifold?

Remark
In the Euclidean case and in the Taub–NUT case, it vacously
holds.
Tsai and Wang proved it in the E-H case.
Compactness is crucial

p1 p2
S2 ⊂ T ∗S2

p1 p2

Figure: Karigiannis-Min-Oo construction not circle-invariant.
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Spherical barriers I

Lemma (T. 2020)

The S1-invariant hypersurface in X corresponding to the Euclidean
sphere Sr is strictly 3-convex w.r.t the interior of the sphere for all
r > 4/3maxi |pi |R3 and all r < min{|pi |R3 : |pi |R3 > 0}. Moreover,
it is strictly 1-convex if r > C maxi |pi |R3 , where C ≈ 5.07 and for r
small enough when centered in a pi .

p1 p2p3O

C max|pi |



The Barrier Method The Gibbons–Hawking Ansatz Barriers in the Gibbons–Hawking Ansatz

Spherical barriers II

Theorem (T. 2020)

Compact minimal hypersurfaces (submanifolds) need to be
contained in π−1({|x |R3 ≤ 4/3(C ) maxi |pi |R3}). Moreover, there
are no compact minimal hypersurfaces contained in
π−1({|x |R3 < min{|pi |R3 : |pi |R3 > 0}}).

Idea of the proof: Relate IIFF of the hypersurface in X to the
IIFF of the projecting surface in R3 plus terms involving φ and
∇R3φ. Diagonalize the second fundamental form of the surface we
obtain a 3× 3 matrix which is simple enough to study its convexity.
Harvey and Lawson barriers let us conclude.
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Cylindrical barriers I

Lemma (T. 2020)

The S1-invariant hypersurface in X corresponding to the Euclidean
Cylinder Σr := {x2

1 + x2
2 = r2} is strictly 3-convex w.r.t the interior

of the cylinder for all r > 2maxi ri and all r < min{ri : ri > 0},
where ri :=

√
(pi )2

1 + (pi )2
2.

p1 p2p3
2max{ri : ri > 0}
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Cylindrical barriers II

Theorem (T. 2020)

Compact minimal hypersurfaces need to be contained in
π−1({|x |R3 ≤ 2maxi ri}). Moreover, there are no compact minimal
hypersurfaces contained in π−1({|x |R3 < min{ri : ri > 0}}).

Corollary (T. 2020)

There are no compact minimal hypersurfaces in the collinear case.

Idea of the proof: Analogous to the spherical case

Remark
Differently from the spherical case, hypersurfaces corresponding to
Euclidean cylinders cannot be 1 or 2 convex.



The Barrier Method The Gibbons–Hawking Ansatz Barriers in the Gibbons–Hawking Ansatz

Ellipsoidal Barrier I

Lemma (T. 2020)

In the two point case, the S1-invariant hypersurface corresponding
to the Euclidean ellipsoid Σr is strictly 1-convex with respect to the
interior of the ellipsoid for all r > 0.

p1 p2
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Ellipsoidal Barrier II

Theorem (T. 2020)

In the two point case compact minimal submanifolds are contained
in the unique S1-invariant compact minimal surface.

Corollary
If we have at most two singular points, compact minimal
submanifolds are S1-invariant, or are contained in one.

Remark
In particular, we can reckon our theorems as extensions to the
multi-point case of the classical barrier theorem for the Euclidean
(Taub-NUT) space and of Tsai and Wang barrier theorem for the
Eguchi-Hanson space.
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k-ellipsoidal barriers?

1 point =⇒ spheres are convex
2 points =⇒ ellipsoids are convex
k points ?

=⇒ k-ellipsoids are convex

p1 p2

p3

p1 p2

p3
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Local barriers

WLOG: we can only consider compact complex surfaces.

Proposition (Tsai and Wang 2018)

Given a compact minimal surface with everywhere positive Gaussian
curvature, there exists a neighbourhood in which the square of the
distance function is 2-convex.

Proposition (T. 2020)

Given a compact minimal surface with a point of negative Gaussian
curvature, every neighborhood of the surface admits a point where
the square of the distance function is not 2-convex.

p Σ

L
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Existence local barriers

Proposition (Lotay-Oliveira 2020, T. 2020)

If {pi}ki=3 are sufficiently distant, w.r.t the Euclidean metric, from
the midpoint of p1 and p2, then the S1-invariant minimal surface
corresponding to the segment p1p2 has everywhere positive
Gaussian curvature.

p1 p2
q

(s + 1)a
p3

p4

p5
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Non-existence local barriers

Proposition (T. 2020)

If p1 = (0, 0, 1), p2 = (0, 0,−1) and p3 = (0, ε, 0) are the singular
points, then there exists an ε small enough such that the Gaussian
curvature is negative at π−1(0).

Conclusion
Hence, we have shown that the natural barriers are not strong
enough, not even locally, to prove that compact minimal
submanifolds are circle-invariant or contained in one for a generic
multi-Eguchi–Hanson or multi-Taub–NUT space.
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Thank You!
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